skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koscak, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the proliferation of distributed energy resources (DERs) in the distribution grid, it is a challenge to effectively control a large number of DERs resilient to the communication and security disruptions, as well as to provide the online grid services, such as voltage regulation and virtual power plant (VPP) dispatch. To this end, a hybrid feedback-based optimization algorithm along with deep learning forecasting technique is proposed to specifically address the cyber-related issues. The online decentralized feedback-based DER optimization control requires timely, accurate voltage measurement from the grid. However, in practice such information may not be received by the control center or even be corrupted. Therefore, the long short-term memory (LSTM) deep learning algorithm is employed to forecast delayed/missed/attacked messages with high accuracy. The IEEE 37-node feeder with high penetration of PV systems is used to validate the efficiency of the proposed hybrid algorithm. The results show that 1) the LSTM-forecasted lost voltage can effectively improve the performance of the DER control algorithm in the practical cyber-physical architecture; and 2) the LSTM forecasting strategy outperforms other strategies of using previous message and skipping dual parameter update. 
    more » « less